Efficiency of different numerical methods for solving Redfield equations
نویسندگان
چکیده
The numerical efficiency of different schemes for solving the Liouvillevon Neumann equation within multilevel Redfield theory has been studied. Among the tested algorithms are the well-known Runge-Kutta scheme in two different implementations as well as methods especially developed for time propagation: the Short Iterative Arnoldi, Chebyshev and Newtonian propagators. In addition, an implementation of a symplectic integrator has been studied. For a simple example of a two-center electron transfer system we discuss some aspects of the efficiency of these methods to integrate the equations of motion. Overall for time-independent potentials the Newtonian method is recommended. For time-dependent potentials implementations of the RungeKutta algorithm are very efficient. PACS: 02.60.Cb, 31.70.Hq, 34.70.+e
منابع مشابه
On Efficiency of Non-Monotone Adaptive Trust Region and Scaled Trust Region Methods in Solving Nonlinear Systems of Equations
In this paper we run two important methods for solving some well-known problems and make a comparison on their performance and efficiency in solving nonlinear systems of equations. One of these methods is a non-monotone adaptive trust region strategy and another one is a scaled trust region approach. Each of methods showed fast convergence in special problems and slow convergence in other o...
متن کاملA numerical algorithm for solving a class of matrix equations
In this paper, we present a numerical algorithm for solving matrix equations $(A otimes B)X = F$ by extending the well-known Gaussian elimination for $Ax = b$. The proposed algorithm has a high computational efficiency. Two numerical examples are provided to show the effectiveness of the proposed algorithm.
متن کاملA new approach for solving fuzzy linear Volterra integro-differential equations
In this paper, a fuzzy numerical procedure for solving fuzzy linear Volterra integro-differential equations of the second kind under strong generalized differentiability is designed. Unlike the existing numerical methods, we do not replace the original fuzzy equation by a $2times 2$ system ofcrisp equations, that is the main difference between our method and other numerical methods.Error ana...
متن کاملA Three-Point Iterative Method for Solving Nonlinear Equations with High Efficiency Index
In this paper, we proposed a three-point iterative method for finding the simple roots of non- linear equations via mid-point and interpolation approach. The method requires one evaluation of the derivative and three(3) functions evaluation with efficiency index of 81/4 ≈ 1.682. Numerical results reported here, between the proposed method with some other existing methods shows that our method i...
متن کاملA NEW TWO STEP CLASS OF METHODS WITH MEMORY FOR SOLVING NONLINEAR EQUATIONS WITH HIGH EFFICIENCY INDEX
It is attempted to extend a two-step without memory method to it's with memory. Then, a new two-step derivative free class of without memory methods, requiring three function evaluations per step, is suggested by using a convenient weight function for solving nonlinear equations. Eventually, we obtain a new class of methods by employing a self-accelerating parameter calculated in each iterative...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008