Efficiency of different numerical methods for solving Redfield equations

نویسندگان

  • Ivan Kondov
  • Ulrich Kleinekathöfer
  • Michael Schreiber
چکیده

The numerical efficiency of different schemes for solving the Liouvillevon Neumann equation within multilevel Redfield theory has been studied. Among the tested algorithms are the well-known Runge-Kutta scheme in two different implementations as well as methods especially developed for time propagation: the Short Iterative Arnoldi, Chebyshev and Newtonian propagators. In addition, an implementation of a symplectic integrator has been studied. For a simple example of a two-center electron transfer system we discuss some aspects of the efficiency of these methods to integrate the equations of motion. Overall for time-independent potentials the Newtonian method is recommended. For time-dependent potentials implementations of the RungeKutta algorithm are very efficient. PACS: 02.60.Cb, 31.70.Hq, 34.70.+e

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Efficiency of Non-Monotone Adaptive Trust Region and Scaled Trust Region Methods in Solving Nonlinear Systems of Equations

In this paper we run two important methods for solving some well-known problems and make a comparison on their performance and efficiency in solving nonlinear systems of equations‎. ‎One of these methods is a non-monotone adaptive trust region strategy and another one is a scaled trust region approach‎. ‎Each of methods showed fast convergence in special problems and slow convergence in other o...

متن کامل

A numerical algorithm for solving a class of matrix equations

In this paper, we present a numerical algorithm for solving matrix equations $(A otimes B)X = F$  by extending the well-known Gaussian elimination for $Ax = b$. The proposed algorithm has a high computational efficiency. Two numerical examples are provided to show the effectiveness of the proposed algorithm.

متن کامل

A new approach for solving fuzzy linear Volterra integro-differential equations

In this paper, a  fuzzy numerical procedure for solving fuzzy linear Volterra integro-differential equations of the second kind under strong  generalized differentiability is designed. Unlike the existing numerical methods, we do not replace the original fuzzy equation by a $2times 2$ system ofcrisp equations, that is the main difference between our method  and other numerical methods.Error ana...

متن کامل

A Three-Point Iterative Method for Solving Nonlinear Equations with High Efficiency Index

In this paper, we proposed a three-point iterative method for finding the simple roots of non- linear equations via mid-point and interpolation approach. The method requires one evaluation of the derivative and three(3) functions evaluation with efficiency index of 81/4 ≈ 1.682. Numerical results reported here, between the proposed method with some other existing methods shows that our method i...

متن کامل

A NEW TWO STEP CLASS OF METHODS WITH MEMORY FOR SOLVING NONLINEAR EQUATIONS WITH HIGH EFFICIENCY INDEX

It is attempted to extend a two-step without memory method to it's with memory. Then, a new two-step derivative free class of without memory methods, requiring three function evaluations per step, is suggested by using a convenient weight function for solving nonlinear equations. Eventually, we obtain a new class of methods by employing a self-accelerating parameter calculated in each iterative...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008